

POREX Virtek® PTFE

Robust and durable Sintered PTFE membranes

Filtration Group®

Making the World Safer, Healthier & More Productive

Filtration Group's History of Transformative Growth

Our Evolution

Enhancing our capabilities through acquisitions while delivering or growth

The Strength of Madison Industries

TOGETHER, WE ARE MAKING THE WORLD SAFER, HEALTHIER AND MORE PRODUCTIVE.

Filtration Group

Quality manufacturing and local support

Manufacturing facility: Alness, Scotland

Facility

- 2,300m² footprint
- 1,000m² class 100k cleanroom manufacturing
- QC and product development laboratories
- Warehouse and distribution center

Site certifications

- Quality ISO:9001
- Safety ISO:45001

Material Properties: physical properties

Polymer	Pore Size (microns)	Pore Volume %	Operating Temperature (°F / ° C)
Polyethylene (PE)	5 to 250	25 - 60	180 / 82
Polypropylene (PP)	100 to 300	30 - 40	250 / 121
Polyvinylidene Fluoride (PVDF)	20 to 30	30 - 40	300 / 149
Polytetrafluoroethylene (PTFE)	<1 to 60	25 - 60	500+ / 260+

Understanding typical material properties will guide you in selecting the right material for your device's function and operating conditions

Porex – your partner in innovative porous polymer solutions

Solving your design challenges with porous PTFE membrane

vent & filter

Exchange of air, fumes, a gas, or water vapor while acting as fluid, dust or bacteria barrier

Property of diffusively reflecting light or radiation

support / separation

Low di-electric constant substrate for antennae systems or inert porous layer to allow gas or liquid flow

The sintering process - basics

Process of compacting and forming a solid mass of porous material by heat and/or pressure without melting

The skiving process membrane formation

Process of cutting or slicing a larger form with precision tools into thinner films, membranes or sheets

Manufacturing process Various stages

Range of material options

Master roll:

- 330mm wide
- Thickness from 0.1mm 3.0mm
- Roll length dependent on thickness (3m 100m)

Converting options:

- Slit Rolls
 - 8mm minimum width (for most materials)
 - Provided on 76mm (3") ID plastic cores

Die-cutting

- Minimum 3mm diameter
- Minimum 5mm diameter if with adhesive
- Custom Shapes
- Robotic Frit cutting for thicker membranes
- Adhesive Discs
 - Numerous stock, standard and custom size/shapes available
- Lamination
 - PP / PE scrim options available
 - Adhesive backing

15

Material format possibilities

Filtration Group

Common Assembly options Porex Virtek PTFE

Thermal & Ultrasonic Welding

Overmolding

Porex Virtek[®] Membrane

Snap-fit or Clamping

Apply zone adhesive / epoxy around vent hole Seal with Porex Virtek[®] Membrane

Press Fit

Pressure-sensitive adhesive (PSA)

Zone adhesive / Epoxy

Porex Virtek® sintered PTFE What to expect

- Robust, pure and durable:
 - Requires no supporting layers or chemical treatments
 - Safe to handle without damaging
 - Highly heat and chemical resistant
 - No assembly orientation required
 - High purity with virtually no leachable or extractables

Customizable membrane options:

- 0.1 to 3 mm thickness available
- Several application specific product ranges
- Several secondary process options available
- Manufactured in class 100k cleanroom
- UL-94 and UL-746C listed
- Raw material certified for:
 - USP class VI (bio-compatibility)
 - FDA 21 CFR 177:1550 (food contact)
- PFOA Free

SEM image of Porex Virtek® PTFE

Hydrophobic membranes

Due to the unique manufacturing process:

- Robust and durable
- Easily welded & assembled
- Naturally super-hydrophobic
- Structure has "memory" when stressed
- Customizable & printable

The base material is super hydrophobic by nature. Additional oleophobic treatment option for applications where there is contact with low surface energy fluids (such as oils, alcohols and surfactants)

Hydrophobic membrane

Naturally hydrophobic, 100% pure PTFE membrane:

- Naturally repels water
- Resistant to steam, ETO and other sterilization techniques (no Gamma)
- Resistant to virtually all chemicals
- Continuous-use temperature up to 260 °C
- Many assembly techniques including heat and ultrasonic welding, clamping, press-fit, overmolding and adhesive or epoxy bonding

Naturally super-

Naturally superhydrophobic

Air and gases freely pass through membrane while liquids, dust, microbes and debris are blocked

02. Comparison to other material technologies

Stretched membranes

Source: Cobetter Filtration https://www.cobetterfiltration.com/Industries/Medical/OEM-Membranes-and-Devices/Hydrophobic-ePTFE-Membrane/

Manufacturing process:

- Involves extrusion, rolling and stretching
- After forming the porous membrane, a supporting layer is usually added for strength and stability

Offered by many manufacturers with many material configurations

Common drawbacks:

- Very thin and can be fragile
- Membrane orientation is critical
- Supporting layer often a limiting inferior material
- Physical properties limited to substrate layer so secondary treatments & additives may be needed to maintain or boost properties

Sintered PTFE vs. ePTFE

Sintered PTFE

- **Robust** pore structure due to sintered **3D matrix** construction
- **Self-supporting** membrane that is easy to handle and is **omni-directional**

Expanded PTFE (ePTFE)

- Extruded film that is stretched to create a micro-fractured pore structure
- Structure tends to be delicate and often requires a supporting layer

Cast membrane on non-woven substrate SEM Image

Manufacturing process:

- Involves casting a thin layer on top of a substrate
- Developing a pore structure can be complex and can involve various processes to either remove sacrificial material or developing a uniform coating on a coarser porous layer

Common drawbacks:

- Physical properties limited by the substrate
- Can be fragile and may separate from backing
- Membrane orientation is critical
- Often uses solvents or chemicals to develop pores that can lead to residuals and contamination issues
- Lack of consistency and uniformity

Microscopic comparison

Sintered PTFE Membrane

- Material has depth, is self supporting and will rebound under pressure
- Individual particles bonded to its neighbor providing superior strength
- No additives or binders necessary
- Membrane is a depth filter and follows a torturous path
- Both sides identical and omnidirectional

Expanded / Stretched PTFE Membrane

- Active membrane has minimal depth and is only a surface filter
- Bonding to substrate requires adhesives or lamination to tie layers together
- Service temperatures limited to substrate
- Both sides have different properties
- Membrane properties can be altered if pressure is applied

Cast Membrane

- Casting process often requires chemicals
 or other additives to create structure
- · Layers can delaminate
- Service temperatures and chemical resistance limited to substrate
- Membrane orientation is critical (different sides have different properties)
- Treatment often needed for hydrophobicity

25

Comparison with other membrane technologies

Characteristic	Expanded / Stretched Membranes	Cast Membranes	Sintered Porex Virtek [®] PTFE Membranes
Manufacturing process	Stretching can cause non-uniform and varying densities and can shrink when heated	Casting process can be uneven and difficult to control and can involve many steps	Precise particle size and repeatable process leads to membrane robustness and consistency
Porosity	Pores can have high variability	Many factors can affect pore formation, size and distribution	Depth filtration creates many paths for fine particle capture
Air flow and water repellency	Large tolerances in gas permeability and water entry pressures	Often requires secondary treatments to reach high hydrophobicity levels	Naturally super-hydrophobic with well-defined air flow range and water entry pressures
Chemical resistance	PTFE membrane excellent – however supporting structure or other membrane types will vary	Highly dependent on cast material and support structure	Resistant to virtually all chemicals
Heat resistance	Limited by supporting material	Limited by supporting material	260 °C continuous use
Toughness / robustness	Membrane can be altered by physical exposure or temperature extremes	Highly variable depending on membrane type and support	Highly durable and minimal change due to physical contact or temperature exposure
Durability	Delamination possible, stretched membranes very delicate and can be altered with contact	Separation of layers possible, as are traces of solvent or secondary process aids / coatings	Pure and durable single layer membrane free of processing aids or supporting structures

Video Comparison https://www.youtube.com/watch?v=HVY4NQiPGC4&t=96s

Your partner in PTFE filtered venting solutions for automotive applications

vent & filter:

exchange of air, fumes, a gas, or water vapor while acting as water, fluid, and particulate barrier

Automotive lighting vents

Battery system vents

Fluid system vents

Electrical system vents

Your partner in PTFE filtered venting solutions for electronics applications

vent & filter:

exchange of air, fumes, a gas, or water vapor while acting as fluid, particulate and bacteria barrier

Sensor components

Refillable printer cartridge vents

Your partner in PTFE filtered venting solutions for medical applications

vent & filter:

exchange of air, fumes, a gas, or water vapor while acting as fluid, particulate and bacteria barrier

Spike & infusion set vents

Safety IV catheter vents

Sterilization container filters

Ostomy bag vents

Drug delivery vents

Applications in the life sciences

vent & filter:

exchange of air, fumes, a gas, or water vapor while acting as fluid, particulate and bacteria barrier

Fluid Management is among the many Life Science application areas

Spike set vents

Drug delivery vents

symbientpd.com

Microfluidic Cartridge Vents

Fluid bag vents

Safety IV catheter vents

Applications in Sterile Processing

vent & filter:

exchange of air, fumes, a gas, or water vapor while acting as fluid, particulate and bacteria barrier

Infection Control is among the many Life Science application areas

Cell growth container vents

Fluid container vents

Sterilization container filters

Diagnostic PCR & rapid testing

General sterile packaging

Your partner in PTFE reflectivity solutions for UV applications

reflectivity: property of reflecting light or radiation

Medical phototherapy

Surface disinfection

UV curing

Air disinfection

Water disinfection

How we do it – our unique capabilities

material science expertise

Getting started with Porex

Examples of our engaged partners in innovation

- Abbott
- B. Braun
- Bayer
- BD
- Cardinal Health
- Danaher
- Fresenius Medical Care
- GE Healthcare
- Haemonetics
- Hamilton Company
- Hill-Rom
- Johnson & Johnson
- Medtronic
- Medline
- Siemens Healthineers
- Smiths Medical
- Stryker
- Tecan
- Teva
- Thermo Fisher Scientific
- Zimmer Biomet

automotive

- BMW
- East Penn
- Ford
- GM
- Continental
- Valeo
- Schreiner
- Hella
- Clarios
- Hyundai

electronics & industrial

- Entegris
- Fitbit
- Google
- HP
- Honeywell
- Intel
- Samsung
- Logitech
- Parker Hannifin
- Phillips
- Polaris
- Church & Dwight
- Flextronics

Contact us

PTFE support

Contact Us

Dan Furey 773.771.1955 Dan.furey@filtrationgroup.com phone +44 (0) 1349 884060 email PorexVirtek@filtrationgroup.com

Online

porex.com

LinkedIn/<u>Porex</u> twitter/<u>PorexCorp</u> YouTube/<u>PorexCorporation</u>

