

✓ Key Technologies

Complete Hydrogenation

- Efficient complete-hydrogenation
- Ensured product quality

Anionic Polymerization

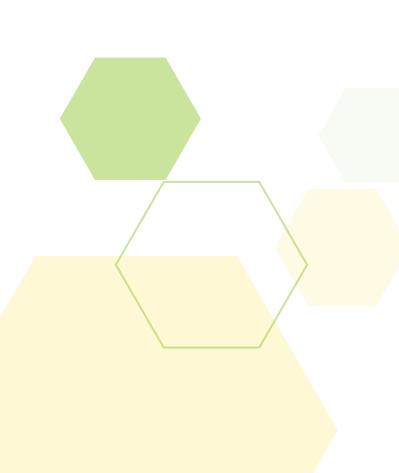
- Precisely controlled molecular weight
- Extremely low extractables

Complete Hydrogenation Technology

Styrene-Butadiene Copolymers

Cyclic Block Copolymers

USI Corporation, one of the largest polymeric material companies based in Taiwan, has a long history in producing and selling PE and EVA. The company acquired the CBC technology from Dow Chemical Co. in 2011 and initiated the world's first -ever CBC mass production line in Kaohsiung,



Taiwan.

For more information, please refer to www.usife.com

are fully hydrogenated polymers based on styrene and conjugated dienes via anionic polymerization. This advanced material has remarkable thermal stability, excellent UV durability, extra-high transparency, low water absorption, low density and superb purity. These features offer the users of ViviOn™ with superior design flexibility, easy processing capability and low life-cycle costs. In addition, the flexibility of tailoring polymer micro-structure by adjusting the ratio of poly(cyclohexylethylene) (PCHE) and ethylene-co-1-butene (EB) provides ViviOn™ a wide range of properties from rigid plastics to soft elastomers.

ViviOn™ Properties

Properties	Unit	Test Method (ASTM)	8210	1325	0510	0510HF	0510T	0510HT
General Properties								
Density	g/cm³	D792	0.94	0.94	0.94	0.94	0.94	0.94
Water Uptake	%	D570	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01
Melt Flow Rate (2.16kg, 230°C)	g/10min	D1238	35	1.3	-	-	-	-
Melt Flow Rate (2.16kg, 260°C)	g/10min	D1238	-	13	5	13	11	9
Optical Properties								
Refractive Index	-	-	1.51	1.51	1.51	1.51	-	-
Transmittance (380-760nm)	%	D1003	92	92	92	92	91.5	91
Haze	%	D1003	<1.0	<1.0	<1.0	<1.0	1.5	5
Thermal Properties								
Vicat Softening Temperature	°C	D1525	109	125	116	114	113	108
Heat Distortion Temperature	°C	D648	83	103	89	88	87	83
Glass Transition Temperature	°C	USI Method	115	128	120	120	119	115
Mechanical Properties								
Flexural Strength	MPa	D790	65	70	64	66	60	56
Flexural Modulus	GPa	D790	2.1	2.3	1.8	1.8	1.6	1.4
Tensile Strength (B.P.)	MPa	D638	35	37	36	35	35	25
Elongation	%	D638	12	14	20	15	16	100
Impact Strength (Charpy Notched	l) kJ/m²	D6110	2.6	3.0	5.0	5.0	12	20
Processing								
Injection Molding			0	0	0	0	0	0
Extrusion Molding				0	0	0	0	0
Injection Stretched Blow Molding					0	0	0	0

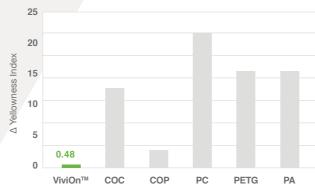
Please contact USI to obtain information on ViviOn™ special grades for Medical, Bio-diagnostic, and UVC Disinfection Applications.

Optical Applications

Improved brightness, clarity and viewing angle for your display

ViviOn™ is an innovative optical polymer with characteristics of low density, extra-high transparency, well-controlled light retardation, excellent UV durability, great chemical resistance, and low moisture uptake. Due to the unique chemical micro-structure, ViviOn [™] can be processed advantageously in most optical fabrications including injection molding, extrusion and solvent casting.

Applications include: optical film, endoscope protective cover, and light guide strip.

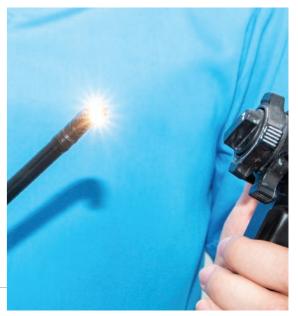


Outstanding Thermal Stability

Time / Materials	ViviOn™	COC	COP
30 min			
60 min			
		At 250°(C oven, air

Thinner & Brighter

•ASTM G154
Wavelength: UVA 340 nm
Irradiation: 0.89 W/m²
Test duration: 1000 hrs
Each cycle include 8 hrs of UV exposure with uninsulated black panel temperature (60±3°C) and 4 hrs of condensation with uninsulated black panel temperature (50±3°C).


Endoscope Protective Cover

Optical Film

Light Guide Strip

Clean & Exceed: Material with minimal contaminants for industrial applications.

ViviOn[™] has been analyzed through Ion Chromatography (IC), ICP-MS, and GC-MS by SGS Lab. Comparing with other engineering polymers, ViviOn[™] has low metal ion concentration, low heavy metal content, and low volatile organic compounds (VOC), which brings low particle generation, low outgassing, and high purity. In addition, ViviOn[™] possesses excellent chemical resistance, great abrasion resistance, high hydrolysis resistance, exceptional dielectric strength, and outstanding radiation resistance. The aforementioned features could be applied to semiconductor fabrication products, carriers and electric packaging containers, etc.

ViviOn™ presents low Dk and low Df, which could increase data transmission speed and decrease its noise. Applications include: 5G electronics/antenna products and radar/IR sensor.

Regulation/Test	Test Details	Results
REACH (SVHC)	213 Substances of Very High Concern test (EU)	Passed
RoHS	10 Heavy Metals, Plasticizers	Passed
Halogen Free	Fluorine (F), Chlorine (Cl), Bromine (Br), Iodine (I)	Passed

Low Dk, Low Df

	Test		ViviOn ¹	™ Sample Th	nickness
Properties	Method	d Condition 50µ	50µm	100µm	200µm
Dielectric Constant	DEA	10GHz	2.300	2.246	2.244
Dissipation Factor	DEA	10GHz	0.00016	0.00018	0.00041

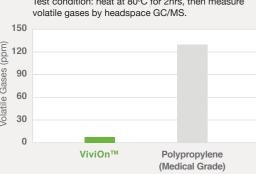
Radar/IR Sensor

Eyewear
Applications
Light & Floating: Superior choice

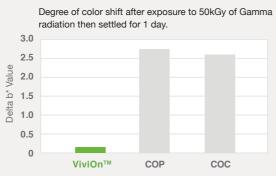
ViviOn™ displays low density floating property, high impact resistance, and Gamma/UV sterilizable, which makes it suitable for eyewear, e.g.: frame of sunglasses and sport glasses, medical safety goggles, etc.

for water sports.

Medical Applications


Pure & Clean: An extremely clean and trustworthy material for medical devices

ViviOn™ is safe, reliable and durable for medical applications with features of extreme purity, good thermal stability, excellent UV durability, superb chemical resistance and outstanding clarity. The products made by ViviOn™ can be sterilized using Gamma and E-beam radiation, Ethylene Oxide Gas (EOG), providing medical professionals ease of use and compatibility.


ViviOn[™] passes selected chapters of ISO10993 biocompatibility, US Pharmacopeia <88> Class VI and <661>, European Pharmacopeia 3.1.3, as well as JP Pharmacopeia 7.02. The material is listed in the U.S. FDA Type III Drug Master File 32470.

Applications include: pre-filled syringe, vial, and contact lens mold.

Mechanical properties were measured before and after 3

weeks of Gamma irradiation.

80

40

20

Izod Impact Tensile Strength Flexural Strength

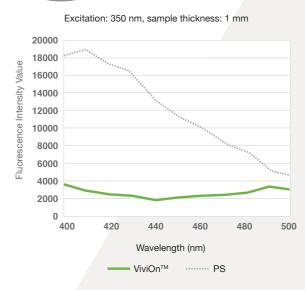
50kGy

Sterilization Method

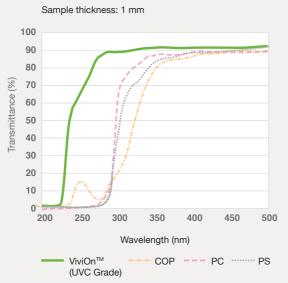
Gamma Radiation	~
E-beam Radiation	~
Ethylene Oxide Gas	~

Regulation/Test	Test Details	Results
BPA Test	SGS Bisphenol A test	Not Detected
DMF	US FDA Drug Master File for pharmaceutical application	No. 32470
ISO10993 - 4/5/6/10/11	Hemolysis, Cytotoxicity, Muscle Implantation, Intracutaneous Irritation, Sensitization, Accute Systemic Toxicity	Passed
USP <88> Class VI	Acute System test, Intracutaneous test, Implantation test	Passed
USP <661>	Non-Volatile Residue, Heavy Metals (as Pb), Buffering Capacity	Passed
JP Pharmacopeia 7.02	Residue on Ignition, Heavy Metals (Pb, Cd, Sn), Foaming test, pH Value, KMnO4 Reducing Substances, UV Spectrum, Residue on Evaporation	Passed
European Pharmacopeia 3.1.3	European Pharmacopoeia 3.1.3	Passed
Extractables	Reflux, Sonication and Closed vessel extractions.	Neligible

9 10


Bio-diagnostic Applications

Accurate & Reliable: The material-of-choice for bio-diagnostic devices


ViviOn[™] presents extreme cleanness and exceptional performance in its optical properties: higher UV transmittance and lower autofluorescence than other plastics to increase the accuracy and reliability of the analysis.

Applications include: cuvette, microplate and microfluidic chip (bio-chip) for UV and/or fluorescence detection.

Low Autofluorescence

	Solvent	Resistance
	Hydrochloric acid 36%	0
Acid	Sulfuric acid 40%	0
ACIO	Acetic acid > 94%	0
	Nitric acid 65%	0
Alkali	NaOH 50%	0
Alkali	Ammonia solution 35%	0
	Methanol	0
Alcohol	Ethanol	0
	Isopropanol	0
Ketone	Acetone	0
Ketone	Methyl Ethyl Ketone	0
Hydrocarbon	Hexane	×
riyurocarbon	Cyclohexane	×
	DMSO	0
Others	Silicone oil	0
	Ethylene glycol	0

ViviOn™ resin & tensile bar specimen were immersed in the chemical or reagent for 2 days at room temperature, the specimen's weight loss and mechanical reduction were then measured. Resistant (○): weight loss < 1% and elongation at break% did not change significantly; Not Resistant (★): weight change >5% or elongation at break% reduced by > 50%.

Accurate & Reliable

11 12

Deep Ultraviolet (UVC) Applications

Exceptional processability for a safe disinfection device

High UVC Transmittance

Sample thickness: 1mm

300

Wavelength (nm)

100

80

70

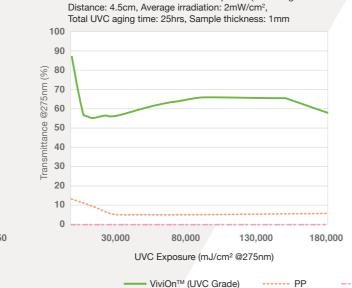
60

50

40

30

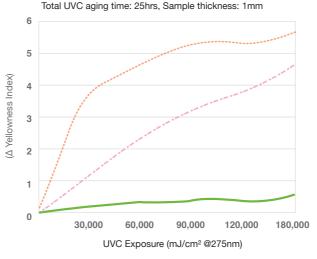
20


ViviOn™ is a medical grade plastic material with high UVC transmittance and durability for deep ultraviolet (UVC) applications. In comparison with other plastics, ViviOn™ maintains high UVC transmittance and a glass-like appearance under long-term UVC exposures, which makes it a suitable choice in portable UV sterilizer.

ViviOn™ can be fabricated into sheets and parts for UVC disinfection devices through conventional processes, e.g., injection molding, extrusion, etc. With its exceptional processability, superior chemical resistance, and low density, ViviOn™ provides a versatile flexibility in product design.

Substantial UVC Durability UVC Transmittance @ 275 nm

UVC source: UVC LED 10mW × 150 pieces (Wavelength: 265-278nm)


Distance: 4 5cm. Average irradiation: 2mW/cm²

YELLOW

Low Color Shift after UVC Exposure

UVC source: UVC LED 10mW × 150 pieces (Wavelength: 265-278nm)
Distance: 4.5cm, Average irradiation: 2mW/cm²,
Total LIVC aging time: 25brs. Sample thickness: 1mm

Sterilization

Time (s)

0 s

10 s

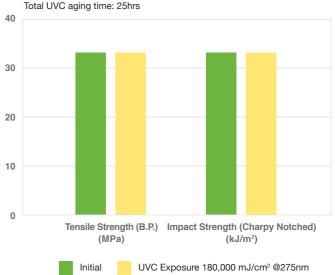
Mechanical Properties after UVC Exposure

High UVC Sterilization Efficiency

Amount of E. coli (CFU/mL)

 4.47×10^{5}

 4.37×10^{5}


Portable UVC Sterilizer

UVC Source: Philips 8W T5 (Wavelength: 253.7 nm)
Distance: 1.6 cm, Plate Thickness: 1 mm

ViviOn™(UVC Grade)

 4.47×10^{5}

UVC source: UVC LED 10mW × 150 pieces (Wavelength: 265-278nm) Distance: 4.5cm, Average irradiation: 2mW/cm²,

13 14

PETG

www.usife.com +886 2 8751 6888, ext:6724

12th Floor, No. 37, JiHu Road, NeiHu District, Taipei 11492, Taiwan(R.O.C.)

The information contained herein is, to our best knowledge, true and accurate. However, since conditions of use are beyond our control, all recommendations or suggests are presented without guarantee or responsibility on our part. We disclaim all liability in connection with the use of information contained herein or otherwise. All risks of such use are assumed by the user. Furthermore, nothing contained herein shall be constructed as an inducement or recommendation to use any process or to manufacture or use any product in conflict with existing or future patents.